Presentación del simulador SIMPRO– Nivel 1

UNIVERSIDAD SAN IGNACIO DE LOYOLA

Carrera de Marketing

Facultad de Ciencias Empresariales

Enviar certificados a;

Av. La Fontana 550, La Molina (Lima 12), Lima - Perú,
 Central Telefónica (511) 317 – 1000

 Dirigidos al Sr. Pablo Lesevic Roberto, Director de la Carrera de Marketing

Nuestro Equipo

- Pablo Antonio Lesevic Roberto (profesor)
- Juan Puicón Villanueva
- Fiorella Cárdenas Santiago

Primer paso fundamental ...

 Leer, leer todo el Manual del Simulador en sus versiones Básica y Avanzada

Análisis de la demanda

 ¿Presenta la demanda de los productos X,Y,Z cambios bruscos?

 Se debe analizar la demanda actual, pero más importante aún es la demanda del período posterior.

Análisis de la situación Actual de la Empresa.

- La compañía contaba con un juego inicial de 8 trabajadores. No obstante, no todos producían al nivel de experiencia que les correspondía.
- Es por ello que se decide suspender (y posteriormente despedir) a la mitad de los obreros.
- Fueron reemplazados por aquellos que tuvieran un potencial Muy Bueno.

Materia prima

- Inventario Just In Time será necesario para aminorar los costos de Materia Prima.
- Bastará con una simple operación aritmética y establecer una % adicional de necesidad para productoss que han sido rechazados.

Materia prima

 De acuerdo a estimaciones, no se debería realizar más de dos pedidos de Materia prima. Esto debido a que los costos fijos se incrementan en demasía.

Mano de Obra Directa

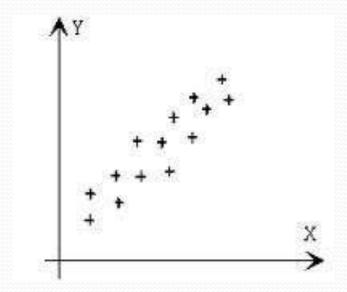
- La eficiencia de un obrero estará en función de su días de experiencia, días de entrenamiento, potencial (bueno, malo).
- Bastará un modelo de regresión lineal múltiple para comprender cada uno de los efectos de la variables en el desempeño de cada trabajador.

Mano de Obra Directa

$$y_1 = \beta_o + \beta_1 x_{11} + \beta_2 x_{21} + \dots + \beta_p x_{p1} + e_1$$

$$y_2 = \beta_o + \beta_1 x_{12} + \beta_2 x_{22} + \dots + \beta_p x_{p2} + e_2$$

$$y_n = \beta_o + \beta_1 x_{1n} + \beta_2 x_{2n} + \dots + \beta_p x_{pn} + e_n$$

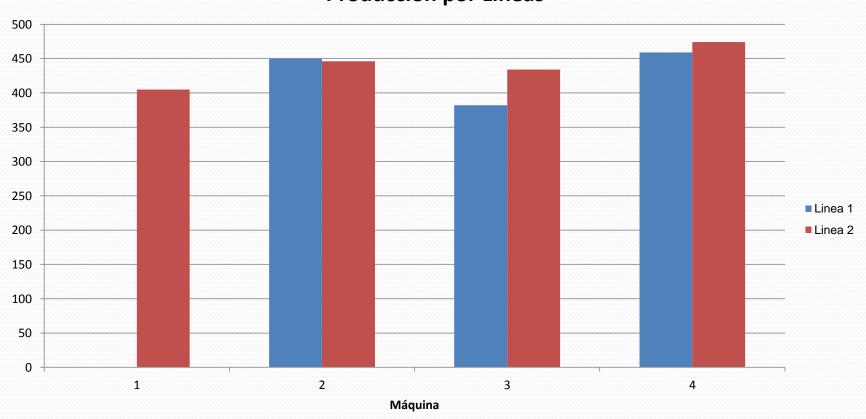

Maquinaria

- Existe un nivel óptimo de inversión en Mantenimiento de Maquinaria.
- Es preferible invertir en Mantenimiento que pagar los costos de paro de Máquina

Maquinaria

 Bastará emplear una regresión linear simple para estudiar la relación entre la Inversión en mantenimiento y el porcentaje de horas máquina que se realizan de forma exitosa.

Asignación de trabajadores a Máquinas


- En nuestra estrategia hubo un intercambio permanente entre los trabajadores de la línea 1 y la línea 2 (productos intermedios y finalizados).
- La rotación permanente favoreció a una producción más eficiente.

Asignación de trabajadores a Máquinas

- Hay ocasiones en las que se deberá suspender a un trabajador. Esto no necesariamente obedece a que se haya sobreproducción en un buen, ya que en ocasiones la sobreproducción sirve a demandas futuras.
- La suspensión obedecerá más a la búsqueda de eficiencia máxima intertemporal y no la de un único período.

Asignación de trabajadores a Máquinas

Producción por Lineas

Un caso de «sobreproducción» conveniente

INVENTARIOS FINALES					
		INVENTARIO	PRODUCCION	DEMANDA	INVENTARIO
		INICIAL	ESTE PERIODO	ESTE PERIODO	FINAL
	X	1746	434	2150	30
	Y	1539	446	1514	471
	Z	2230	879	2379	730

Se tomó esta medida porque en el siguiente período la demanda por bienes del tipo Z hubiera requerido demasiados cambios en la producción asignada a cada maquina.

Estimación de la productividad para el período inmediato siguiente.

Observado	OPERADOR	Esperado
1.37	3	137%
1.29	26	130%
1.25	1	
1.35	13	135%

Control de Calidad

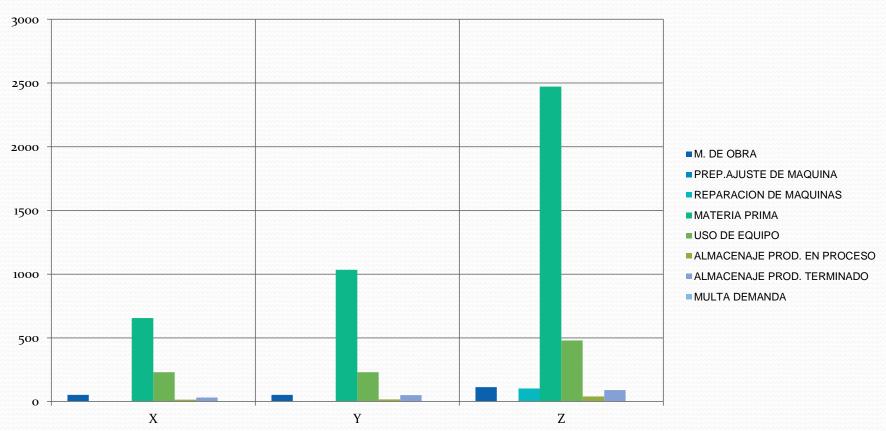
• Búsqueda de punto óptimo que minimice las unidades rechazadas dado un nivel de producción.

PRODUCTO	HORAS PROG.	HORAS PRODUCTIVAS		PRODUCCION
Х	12	12		676
Υ	12	12		533
Z	12	12		412
Z	12	12		437
PRODUCTO	HORAS PROG.	HORAS PRODUCTIVAS	RECHAZOS	PRODUCCION
Z	12	10	1	400
Υ	11	11	1	547
X	11	11	1	673
7	12	12	4	439

Satisfacción de la demanda

• En nuestra estrategia, era preferible tener una ligera sobreproducción a obtener multas por demandas no satisfechas.

			Ž.
DATOS DE DEMANDA			
		DEMANDA	LLEVADO DEL
		PERIODO 9	PERIODO 6
	Х	2150	0
	Y	1514	0
	Z	2379	0


Satisfacción de la demanda

 Debido a lo anterior, muchas veces se decidió producir al máximo en la línea 1

LINEA 1		
Trabajo/Entrena Tra = 0 , Ent = 1 ⊘	Prod. Programada X=1 Y=2 Z=3 2	Horas Programadas (0-12) 🕜
1	1	12
1	2	12
1	3	12
1	3	12

Resultados de decisiones

Costos del período (agrupados)

Resultados de decisiones

Se logró minimizar gastos de inventario.

• Uno de nuestros primeros errores fue fallar en las proyecciones de rendimiento iniciales de los obreros, lo cual generó multa de demanda.

Resultados

• La búsqueda de la mayor eficiencia es un proceso paulatino. No es recomendable buscar «resultados pico» que genere cambios bruscos en un período intermedio.

		Firma 4	88.11	55.32	85.71	79.65	90.81	103,08	98.63	113.81	111.42	128.64
--	--	---------	-------	-------	-------	-------	-------	--------	-------	--------	--------	--------

Agradecemos a Michelsen Consulting por dejarnos participar en tan importante evento