Beyond Effective Frequency:
Evaluating Media Schedules Using
Frequency Value Planning

HUGH M. CANNON
Wayne State University
hugh.cannon@wayne.edu

JOHN D. LECKENBY
The University of Texas at Austin
JohnLeckenby@mail.utexas.edu

avery abernethy
Auburn University
Avery@business.auburn.edu

Following the development of computer models for estimating frequency distributions, media planners have searched for a simple method of utilizing distributional information in media planning. The most popular is effective frequency planning (EFP). However, recent research has challenged the value of the EFP approach. Indeed, EFP presents an enormous paradox. On one hand, it is widely used by media planners. On the other hand, it appears to be severely flawed as a method. This paper discusses possible reasons for the paradox, suggesting that, for all its flaws, EFP addresses the need for a practical, and relatively simple, method for utilizing frequency distribution data. The paper offers frequency value planning (FVP) as an alternative solution. While the basic concept has been well known for many years, it has never received broad industry acceptance. This paper provides a practical method for implementing the FVP approach, discussing methods for estimating the advertising response curve and other key inputs. It provides metrics for both evaluating the efficiency of alternative media schedules and for determining the cost effectiveness of alternative budgets.

There is some uncertainty over the roots of the effective reach and frequency concept. However, there is no question regarding the enormous popularity it has achieved as an approach to media planning. In the years following the publication of Naples’ (1979) classic book on the subject, it has become standard industry doctrine. According to a survey by Kreshel, Lancaster, and Toomey (1985), 86.2 percent of advertising agencies use effective reach as a major criterion in media planning. Leckenby and Kim (1994) found 68.3 percent of media planners in the top 100 U.S. agencies used effective reach compared to 59.3 percent usage in 1982. While the actual estimations vary according to the methodology used, it is clear that effective reach is widely used by the advertising industry.

For purposes of discussion, we can use the terms effective reach, effective frequency, and effective reach and frequency interchangeably. Effective frequency generally refers to the average number of vehicle exposures (often called opportunities to see, or OTS) required to effectively expose the average audience member to an advertising message. Effective reach is the number (or percentage) of a particular target population that is exposed at this level. Effective reach and frequency refers to the concept of using these measures in media planning. For convenience, we will use the term effective frequency planning (EFP) to represent the process through which media planners put effective reach and frequency into practice. This is generally done by seeking to maximize effective reach within a particular budget constraint, subject, of course, to other media planning and buying factors.

Given the popularity of EFP within the advertising industry, it is no wonder that recent criticisms of the concept have met with a storm of controversy. But the criticisms are persuasive. Cannon and Riordan (1994) reviewed the literature and argued that the overwhelming weight of
Advertisers are in fact wasting millions of dollars each year through inefficient media planning.

faulty premises, but that it leads those who use it to develop inefficient media plans and schedules. By implication, they agree that this costs the industry millions of dollars in wasted advertising every year.

This paper is based on two key assumptions: First, the paradox is valid. Advertisers are in fact wasting millions of dollars each year through inefficient media planning. Second, there must be a reason behind the paradox, and unless we can identify the reason and address it, the situation is not likely to change.

This paper begins by articulating several possible reasons for the EFP paradox.
on the numbers” instead of using their own professional judgment.

In this environment, a simple rule such as 3+ reach (defining effective reach by those people reached three or more times) appeared very attractive. At worst, it represented a great improvement over simple reach and average frequency. It gave planners an index of how well their plans met frequency objectives, while still allowing for professional judgment in the development and evaluation of plans. Over time, effective frequency became an integral part of media planning culture and procedures. People were trained and on-going systems developed to assess effective reach and frequency. In this environment, abandoning EFP would be understandably difficult, even when it proved to be misleading for most media planning situations.

Face validity
The primary theoretical justification for effective reach and frequency is the notion of a communication threshold. That is, a certain level of exposure is needed to break into people’s awareness and capture their attention, to effectively reach them. A notion such as Webers Law (Aaker and Myers, 1982), suggesting that there is a critical ratio of message strength to ambient “noise,” is intuitively appealing. If the level of advertising exposure falls below a critical level, consumers will not perceive the message. This is consistent with the logic of “pulsing” the market, as suggested by the classic Budweiser studies (Ackoff and Emshoff, 1975). Pavlou and Stewart (2000) suggest that threshold effects not only exist, but that they are likely to become more important as new media focus on more demanding types of consumer response.

Perhaps even more important than the attention given to advertising thresholds by theorists is the fact that virtually every- one has had personal experience with advertising messages that did not “sink in” until the second or third exposure. When it comes time to act on one’s convictions, media planners are no different than anyone else. Abstract scientific evidence will rarely prove as credible as conclusions drawn from personal experience, and effective reach appeared to fit personal experience.

Given this intuitive support, it is no surprise that Krugman’s (1972, 1977) three-exposure theory captured the imagination of the industry. It described an intuitively appealing sequence of consumer responses to television advertising that appeared to be consistent with a communication threshold. He suggested that the first exposure causes consumers to ask, “What is it?” The second causes them to ask, “What of it?” The third exposure is both a reminder and the beginning of disengagement.

Krugman’s theory did not necessarily imply a need for three, or even two, physical advertising exposures but only a series of mental steps in message processing. These might take place in conjunction with a series of advertising exposures, in response to a single exposure, or perhaps be triggered by a single exposure, but take place in the theater of one’s mind at some other time and place (Cannon and Coldring, 1986).

Krugman’s actual theory was not as relevant as how it was interpreted by proponents of effective reach and frequency. Proponents defined effectiveness to be “a minimum of three confirmed vehicle exposures to an individual member of the target group over an agreed-upon period of time” (Murray and Jenkins, 1992). The magic number “three” came to be a commonly accepted industry standard (Lancaster, Kreshel, and Harris, 1986). This was an interesting interpretation, considering Krugman’s research involved forced advertising exposure combined with eye- movement or brain-wave measures. There is a big difference between three advertising exposures and three exposures to a media vehicle.

Encouraging research
Given the need for a simple planning approach that considered frequency distribution, and given a predisposition to accept the notion of effective reach and frequency on the basis of face validity, planners were ready to accept findings supporting this position. The notion of a communication, or exposure, threshold had already received apparent empirical support from Ackoff and Emshoff’s (1975) Budweiser studies. When Naples (1979) presented McDonald’s 1971 study in his book, Effective Frequency, there was very little incentive to question the validity of its interpretation. Its apparent support of EFP made it an ideal reference to use when presenting the new planning paradigm to clients.

FREQUENCY VALUE PLANNING
The most obvious way to address the failings of EFP is to weight every level of exposure in the frequency distribution with an exposure value, determined by the advertising response curve. For instance, if 30 percent of the target audience were expected to be effectively exposed after the first exposure opportunity, the proportion of the target audience receiving one exposure opportunity would be assigned an exposure value of 30%. This is the approach suggested by Cannon and Riordan (1994) in their critique of EFP. They proposed what they called “optimal frequency planning (OPF),” based on the frequency value concept.

In practice, selecting a schedule with the highest value among those considered does not guarantee that the schedule will be optimal, since it does not consider all
possible schedules. Nor do Cannon and Riordan (1994) suggest any guidelines for constructing schedules that are likely to be optimal. In this sense, OFP is probably not an ideal term for the successor to FVP. However, the basic concept appears to be valid.

In place of optimal frequency planning, we will suggest the term, frequency value planning (FVP). Consistent with the OFP approach, it suggests that every level of advertising exposure has some probability of impact on consumers. By assigning these probabilities, or exposure values, to each level of a campaign’s frequency distribution, planners can estimate the campaign’s total impact. This, in turn, enables the planner to design and test various schedules to find one that best meets campaign objectives. Figure 1 summarizes the FVP process.

If the basic concept is simple, the practical problem of estimating all the necessary values is not. Let us now turn our attention to these issues.

Media objectives and goals

FVP begins in the way conventional media planning systems begin, with marketing and communications strategy (box a) yielding a set of quantitative media objectives (box b). Consistent with the classic DAGMAR approach (Colley, 1961), these objectives involve specific levels of consumer response. The response might range from brand awareness to actual purchase behavior.

According to the DAGMAR approach, advertising is generally given the task of communicating rather than closing a sale. The measurement of advertising response should be consistent with the task given to the advertising campaign. This is especially important in the context of modern integrated marketing communications (IMC) campaigns. While different media have always played different roles in a campaign, IMC suggests that we need to be more systematic in the way we allocate tasks (Schultz and Kitchen, 1997; Kitchen and Schultz, 1999), and by implication, measure advertising effects. Furthermore, the fact that campaigns allocate different budgets to each of the constituent advertising programs suggests that these efforts should have a monetary value to the advertiser. For instance, if an advertiser were willing to invest $1.5 million in a television advertising program that is expected to create brand awareness among 50 percent of market members, we might infer that the value of each percentage point of awareness is at least $(1,500,000)/.50 = \$30,000$.

Achieving a desired advertising response, of course, depends on more than just media. The message content and execution both play crucial roles. However, FVP assumes that the message and execution are already fixed, and the purpose of the planning process is to deliver this message in a way that is as cost-effective as possible. The media objective, and by extension, the effectiveness with which it is achieved, is measured by what percentage of the target market responds in the de-
sired manner. In our previous example, this was brand awareness.

Budget constraints
The advertising budget is usually not considered part of the media planning process, because the client, separate from the advertising agency, and certainly separate from the agency’s media department, normally establishes it. Nevertheless, there is usually interaction (as suggested by the arrows connecting boxes b and c in Figure 1). This is necessarily the case, because the budget determines the extent to which media objectives can be achieved, or using Colley’s (1961) terminology, the extent to which specific advertising goals can be achieved.

In order to establish both the budget and advertising goals, planners must estimate the relationship between advertising and advertising response, or what is commonly known as the advertising response curve. A number of studies have addressed this topic over the years. Unfortunately, the work has been largely judgmental, with relatively little rigorous classificational research or testing of theorized relationships.

One of the advantages of the FVP process is that it provides metrics for determining how good the budget is, based on the other assumptions that are incorporated into the planning model.

Cannon (1987) reviewed the literature and developed 27 theoretical propositions regarding the relative need for increased levels of exposure. Foote Cone & Belding Communications (FCB) took a similar approach (Ostrow, 1982; Wray, 1985). While the FCB propositions were not anchored in specific studies found in the literature, they represented a comprehensive effort by advertising practitioners who were seeking to develop a valid, workable system for estimating advertising response, addressing marketing factors, copy factors, and media factors.

One of the advantages of the FVP process is that it provides metrics for determining how good the budget is, based on the other assumptions that are incorporated into the planning model. At the very least, it helps advertisers be internally consistent in their decisions. The line labeled “i” in Figure 1 suggests that the FVP process may indicate a need to reconsider the budget, and hence, the advertising goals, as a result of the analysis.

Developing a trial schedule
The first step in the actual FVP analysis is to construct a trial media schedule (box d in Figure 1) to represent the media program, much as a planner would when using a conventional EFP system. The only difference is that the planner is working against a different criterion. An effective reach schedule of 3+ means the planner will try to place advertisements in visible spaces.

Possible (Ephron, 1995; Jones, 1995). This is because the advertising response curve is typically concave, characterized by continually diminishing returns (Simon and Arndt, 1980; Schultz and Block, 1986). Therefore, lower levels of frequency deliver relatively higher value to the schedule.

This is not to say that frequency is unimportant, only that, if there is a trade-off, reach will take priority. Again, we see the effect of the budget constraint. If a budget-constrained program requires relatively high frequency, conventional media planning tends to limit the scope of the campaign to ensure that advertising reaches the necessary “threshold” of frequency. However, if the advertising response curve is truly concave, and the campaign is already well targeted, FVP provides a compelling argument for abandoning this practice. At the same time, it can also provide a cogent rationale for increasing the budget, as we will see later in our discussion.

Estimating the advertising exposure distribution
Returning to Figure 1, we see from box e that the next step in the FVP process is to estimate the advertising exposure distribution. This is similar to the “frequency distribution” discussed earlier. We noted that one of the most significant developments in the area of quantitative media planning has been the development of mathematical models for estimating these distributions. In practice, the models are typically based on estimates of the probability that a given person will be exposed to a media vehicle, or the probability of “opportunity to see” (OTS). Our approach differs only in that the distributions are based on estimates of actual advertising exposure rather than OTS. There is no reason a frequency distribution model cannot be used for these estimates. One need only
define the media vehicle more narrowly, as the actual advertising rather than the medium in which it was delivered. Thus, the probability of exposure to a particular page of a magazine, rather than to the magazine itself, would be the input into the frequency distribution model. The result is a distribution indicating what percentage of a target population is likely to be exposed once, twice, three times, and so forth to an actual advertisement.

The literature suggests that sequential aggregation methods provide what is perhaps the most practical tool for estimating the distribution, striking a balance between theoretical grounding, accuracy, and speed of computation (Lee, 1988; Rice and Leckenby, 1986). Such methods are also inherent in some proprietary packages used by media planners (Lancaster, 1993; Lieberman and Lee, 1974).

Within the larger class of sequential aggregation models, a simple, but powerful, approach is called MSAD (Morgenztern Sequential Aggregation Distribution) and is based upon a reach formula developed by Morgenzern (Lee, 1988). It has proved to be a very accurate model when used for magazine and television schedules (Rice and Leckenby, 1986). In sequential aggregation procedures, the vehicle frequency distribution of the first two vehicles is computed first; these are then viewed as a composite, single vehicle to be combined with the next vehicle in the media schedule. The resulting distribution is viewed as that of the second composite vehicle to be combined with the fourth vehicle. This procedure continues until all vehicles in the schedule have been integrated into one final vehicle exposure distribution.

Again, any frequency distribution model will accept advertising exposure instead of OTS data, so developing a frequency distribution for advertising versus vehicle exposures does not present any inherent problem. The question is how to estimate the probability of advertising exposure needed as input for the models. A considerable literature exists regarding the general subject, but very little has been written to provide practical guidance in making the necessary estimates. This explains why most media planning models have relied on OTS rather than advertising exposure, notwithstanding the nearly universal acceptance of the criticisms of this approach.

We will argue that, regardless of how difficult the process of estimation, or how inaccurate the estimates, the issue cannot be ignored. Indeed, Cannon and Riordan (1994) suggest that it was a failure to consider the problem of advertising exposure that caused the industry to misinterpret McDonald’s classic brand-switching study (Naples, 1979), thus setting the stage for the costly media planning paradox referred to earlier in this paper. Their analysis suggests that even the crudest estimates of advertising exposure rates would have unmasked the problem and helped head off two decades of potentially misguided industry effort. The fact is that we know advertising exposure rates are substantially lower than vehicle exposure rates. To ignore the fact is analogous to financial executives ignoring the time value of money, simply because they have no accurate way to predict future interest rates.

The literature suggests two basic approaches for making the necessary estimations. One is norming. Given the prominence of television and magazine media, we will use these two media as examples in our discussion. Norming draws on empirical studies of the ratio between advertising and vehicle exposure to develop adjustment factors for vehicle exposure data. For instance, if a television program has a projected rating of 11.0, and past data suggest that 50 percent of viewers are exposed to advertising in similar programs, the projected advertising exposure would be an effective rating of (10.0 x 50%) = 5.0.

Research based on actual observations of television audience members found eyes-on-screen time averaged 32.8 percent for commercials, compared to 62.3 percent for programs (Krugman, Cameron, and White, 1995). Abernethy (1991) conducted a detailed review of observational and survey studies, estimating an overall average of 32 percent television commercial avoidance, or 68 percent advertising exposure.

An average figure, such as Abernethy’s 68 percent exposure, might be used as a basis for the FVP model. However, a better approach would be to develop different estimates, based on the nature of the media vehicle, accounting for differences in the opportunities audience members have to physically avoid the advertisements by leaving the room, “zapping,” and so forth (Abernethy, 1991). For instance, Bearden, Heaton, Klopmenter, and Teel (1981) reviewed studies addressing attention levels for daytime television, noting that they varied between 20 percent and 30 percent of program ratings. In prime time, attention levels were reported at 76 percent of program ratings for a station-break and 84 percent for in-program commercials. In practice, a planner would adjust the average exposure estimates up or down, depending on whether an advertisement was placed in daytime or prime-time television, in a station-break or in a program.

A similar approach might be used in magazine advertising. Roger Sarch publishes data from a host of different magazines, indicating what percentage of readers “noted” seeing advertisements, “associated” the advertisements with their
sponsors, and “read most,” in its *Advances* service. The service breaks these down by magazine and product category. As with television, these scores may be adjusted upward or downward to reflect the effect of different environmental factors, such as the advertising’s position within a magazine.

The second approach is *modeling*. For instance, Cannon (1982) developed a regression model to predict magazine exposure rates, based on the similarity of values reflected in the editorial environment of the magazine versus those reflected in advertisements themselves. While this method was designed to account for the specific effects of editorial environment, a similar approach might be taken to predict the more general effects of advertising size and placement, color versus black and white, etc. Philipport (1993) discusses the factors that might be used to estimate magazine exposure. Donthu, Cherian, and Bhargava (1993) discuss the factors that might be used to estimate exposure rates in outdoor advertising. In a different kind of approach, Gensch (1970, 1973) discusses a general set of media factors that might determine exposure effectiveness across a number of different media.

Estimating the advertising response curve

The core of the FVP approach rests in the shape, slope, and magnitude of the advertising response curve. An advertising exposure distribution has little value without knowing the response values associated with each level of exposure. For instance, suppose you are evaluating your campaign in terms of “message recognition.” Having estimated the advertising frequency distribution (box e), you need to know the degree of “message recognition” that will be achieved by each level of exposure (box f). We may think of response value as a type of conditional probability. That is, how likely are consumers to recognize the advertising message, given 0, 1, 2, 3, and so forth exposures? If we plot these response probabilities, they form an advertising response curve.

As we have noted, the shape of the curve will typically be concave. That is, response to increasing levels of advertising exposure is characterized by continually diminishing returns. True, one might conceive of an S-shaped curve, where response is characterized by increasing returns, at least in the beginning of a campaign. Incremental response to a second or third advertising exposure would be greater than the response to the first; but the response would be relatively low until the advertising exposures reach a “threshold” level, at which point they begin to deliver rapidly increasing returns (Ackoff and Emshoff, 1975; Pavlou and Stewart, 2000). The increasing returns continue to a point of inflection, followed by diminishing returns. Notwithstanding the apparent prevalence of the concave curve, the FVP model will accommodate any pattern of advertising response, whether concave or S-shaped.

The concave curve can be represented by the formula shown in equation [1]. (Note that mathematical functions are shown in spreadsheet notation.)

\[R_x = R_\infty \cdot (1 - \exp(-(a + b \cdot i))) \]

where

- \(R_x \) = Advertising response value to \(i \) exposures
- \(R_\infty \) = Maximum response value, or the response to infinite exposures
- \(a \) = Parameter representing the Y-intercept, or the response to zero exposures
- \(b \) = Parameter representing the slope of the curve
- \(i \) = The number of advertising exposures

Note that the equation has three key parameters: \(R_\infty \), \(a \), and \(b \). \(R_\infty \) and \(a \) can be estimated directly, while \(b \) can be determined by using equation [2] with an estimate of the response value to the first advertising exposure (i.e., \(R_1 \), or the value of \(R \) where \(i = 1 \)).

\[b = \ln(1 - R_1/R_\infty) - a \]

We can develop a corresponding formula for the S-shaped curve using equation [3].

\[R_x/R_\infty / (1 + \exp(a + b \cdot i)) \]

The parameters \(a \) and \(b \) do not have the same meaning for the S-shaped curve as for the concave curve, and the curve is mathematically undefined for zero exposures. Nevertheless, the formula provides a practical tool for estimating an S-shaped pattern of response. Again, it can be estimated from three points, such as the advertising response to one exposure, response to an “effective” level of exposures, and the maximum level of anticipated response. Given the popularity of the three-exposure criterion in EVP, three provides a convenient point to estimate. The formulas for estimating \(a \) and \(b \) are shown in equations [4] and [5].

\[a = (3 \cdot \ln(R_\infty/R_1 - 1) - \ln(R_\infty/R_3 - 1))/2 \]

\[b = (\ln(R_\infty/R_3 - 1) - \ln(R_\infty/R_1 - 1))/2 \]
The rationale for using a mathematical curve rests in the fact that advertising response is not capricious. It operates according to principles.

Experiment with different values, you will find that there is virtually no variation in the way you can plot hypothetical response values without violating the principle of diminishing returns, given an initial level of response (response level with zero advertising exposure), a minimum response (response to one exposure), and a maximum response (response to an infinite number of exposures). These values are determined by the mathematics of the curve.

As an illustration of how this might work, suppose an agency were to develop a set of judgmental guidelines, such as those reflected in Table 1, for establishing maxima and minima, based on the kind of objective a campaign is designed to achieve. For instance, it suggests that undemanding tasks, such as message recognition or brand awareness, can be achieved for 85 percent to 95 percent of the population, whereas demanding objectives, such as purchase behavior, tend to have a maximum from 10 to 25 percent.

In order to estimate the actual minimum and maximum, a planner can select values on the high or low end of the range, depending on the campaign's relative need for exposure frequency. Ostrów (1982) suggests a number of factors that might be used to help estimate this need (see Table 2). In order to use the framework, the planner must weight the various factors according to their relevance, and then rate them according to the degree to which they characterize the advertising situation.

Table 3 illustrates a response-curve parameter evaluation using Ostrów's example. Consider a campaign featuring the 13 characteristics shown in column 1. Column 2 contains an index of relative importance of the factors, derived by distributing 100 points among them. The resulting allocation can be taken as the percentage of total importance given to each factor. Column 3 represents a rating of the advertising situation relative to each factor, using a +1 to -1 scale. Column 4 represents the weighted rating of the situation. The sum, at the bottom of Column 4, provides a net rating. A high rating (high need for frequency) places the maximum and minimum responses at the low end of the range.

To illustrate this approach, if message recognition were the objective in Table 1, the maximum response range from Table 1 would be between 85 percent and 95 percent. A weighted average response value adjustment of zero would call for a maximum response value of 90 percent (halfway between 85 percent and 95 percent). A weighted average of +1 (high need for frequency) would mean a maximum response value of 85 percent. A weighted average of -1 (low need for frequency) would mean a maximum response of 95 percent.

Looking now at the lower range (5 percent to 35 percent), a weighted average of zero would represent a minimum response of 20 percent. A weighted average of +1 would represent a minimum response value of 5 percent, a weighted average of -1 a value of 35 percent. The minimum response value would be the response to a single advertising exposure.

The actual value adjustment was -33, suggesting a maximum response of (90 percent + 33 1/2 percent =) 91.65 percent and a minimum value of (20 percent + 33 1/2 percent =) 24.95 percent. Assuming a no-exposure response value of zero, and applying the values to equations [1] and [2], the resulting response curve is shown in Table 4. Table 4 also shows an S-shaped advertising response curve, assuming that the 24.95 percent minimum requires three exposures and (somewhat arbitrarily) that the response to a single exposure is 5.00 percent.

The purpose of this example was not to endorse Ostrów's (1982) approach but, rather, to illustrate how one agency's system might be adapted to the needs of FVP. Whatever the system, FVP requires three points to estimate the advertising response curve. However, this is no more demanding than the estimates needed to use FEP. Of course, FEP requires the level of "effective frequency." But, planners must also determine an acceptable level of

TABLE 1

Estimated Maximum and Minimum Response Values for Different Kinds of Objectives Used by Planners at a Major Advertising Agency

<table>
<thead>
<tr>
<th>Type of Objective</th>
<th>Typical Maximum Range</th>
<th>Typical Minimum Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message recognition</td>
<td>85–95%</td>
<td>5–35%</td>
</tr>
<tr>
<td>Brand awareness</td>
<td>85–95%</td>
<td>3–25%</td>
</tr>
<tr>
<td>Message recall</td>
<td>70–80%</td>
<td>2–25%</td>
</tr>
<tr>
<td>Brand attitude</td>
<td>30–45%</td>
<td>0–5%</td>
</tr>
<tr>
<td>Purchase behavior</td>
<td>10–25%</td>
<td>0–8%</td>
</tr>
</tbody>
</table>

40 JOURNAL OF ADVERTISING RESEARCH November • December 2002
TABLE 2
Hypothesized Factors Affecting the Need for More (+) or Less (−) Frequency

<table>
<thead>
<tr>
<th>Marketing Factors</th>
<th>Copy Factors</th>
<th>Media Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Established brands (−)</td>
<td>Complex copy (+)</td>
<td>High clutter (+)</td>
</tr>
<tr>
<td>High market share (−)</td>
<td>Unique copy (−)</td>
<td>Compatible environment (+)</td>
</tr>
<tr>
<td>Dominant brand in market (−)</td>
<td>New copy (+)</td>
<td>High attentiveness (−)</td>
</tr>
<tr>
<td>High brand loyalty (−)</td>
<td>Image type copy (+)</td>
<td>Pulsed or flighted (+)</td>
</tr>
<tr>
<td>Long purchase cycle (−)</td>
<td>Many kinds of messages (+)</td>
<td>Few media used (−)</td>
</tr>
<tr>
<td>Product used daily (+)</td>
<td>High copy wearout (−)</td>
<td>Repeated ad exposure (−)</td>
</tr>
<tr>
<td>Heavy spending category (+)</td>
<td>Small ad units (+)</td>
<td></td>
</tr>
<tr>
<td>Special targets (+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective reach, and if this is not achieved within the budget constraint, what to do about it. As we shall see, this problem is easily addressed in FVP.

Calculating frequency value
Box g in Figure 1 represents the final stage of the FVP process. In order to see how this works, consider a schedule that yields a frequency distribution such as the one shown in column b of Table 5. If 38.35 percent of the target market is exposed to one advertisement in a campaign (as is the case for Schedule A in Table 5), and the probability of a given audience member recognizing the message after a single exposure is 24.95 percent, the "message recognition" response value for the one-advertisement exposure group would be \((0.3835 \times 0.2495 =) 0.097\) percent. If the probability of message recognition after two exposures were 43.11 percent, the value for the two-exposure group would be \((0.3265 \times 0.4311 =) 0.1408\) percent. In essence, we are developing a weighted average of the various response curve values (from column d), weighting each level of response by the percentage of the target population exposed (column b). The total frequency value of the schedule is shown in column c, 32.07 percent. In other words, we estimate that 32.07 percent of the target market will respond with message recognition as a result of the media schedule.

The significance of frequency value becomes more obvious when we compare media Schedule A (column b) with Schedule B (column c). We see from the bottom of columns e and f that they both have the

TABLE 3
An Example of How Situational Factors Might Be Used to Adjust Maximum and Minimum Response Values

<table>
<thead>
<tr>
<th>Column 1: Factors Determining Response Value</th>
<th>Column 2: Weight</th>
<th>Column 3: Rating</th>
<th>Column 4: Net Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Product</td>
<td>.10</td>
<td>+.8</td>
<td>+.08</td>
</tr>
<tr>
<td>High competitive market</td>
<td>.10</td>
<td>−.10</td>
<td>−.10</td>
</tr>
<tr>
<td>Short purchase cycle</td>
<td>.05</td>
<td>−.6</td>
<td>−.03</td>
</tr>
<tr>
<td>Less well known brand</td>
<td>.10</td>
<td>+.8</td>
<td>+.08</td>
</tr>
<tr>
<td>Product used daily</td>
<td>.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ad copy complex</td>
<td>.10</td>
<td>−.4</td>
<td>−.04</td>
</tr>
<tr>
<td>Unique copy*</td>
<td>.05</td>
<td>−.8</td>
<td>−.04</td>
</tr>
<tr>
<td>Large copy units*</td>
<td>.10</td>
<td>−.6</td>
<td>−.06</td>
</tr>
<tr>
<td>High clutter</td>
<td>.10</td>
<td>−.8</td>
<td>−.08</td>
</tr>
<tr>
<td>Media environment compatible with category*</td>
<td>.10</td>
<td>−.6</td>
<td>−.06</td>
</tr>
<tr>
<td>Continuous advertising*</td>
<td>.05</td>
<td>−.6</td>
<td>−.03</td>
</tr>
<tr>
<td>Many media used</td>
<td>.05</td>
<td>−.6</td>
<td>−.03</td>
</tr>
<tr>
<td>Many opportunities for repetition*</td>
<td>.05</td>
<td>−.4</td>
<td>−.02</td>
</tr>
<tr>
<td>Weighted Average (response value adjustment)</td>
<td>−.33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Items that are reverse scored to reflect the item's effect on the need for frequency.
TABLE 4
An Example of an Estimated Advertising Response Curve

<table>
<thead>
<tr>
<th>Advertising Exposures</th>
<th>Message Recognition Response (Assuming Concave Curve)</th>
<th>Message Recognition Response (Assuming S-Curve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00.00%</td>
<td>Undefined</td>
</tr>
<tr>
<td>1</td>
<td>24.95%</td>
<td>5.00%</td>
</tr>
<tr>
<td>2</td>
<td>43.11%</td>
<td>11.74%</td>
</tr>
<tr>
<td>3</td>
<td>56.32%</td>
<td>24.95%</td>
</tr>
<tr>
<td>4</td>
<td>65.94%</td>
<td>44.71%</td>
</tr>
<tr>
<td>5</td>
<td>72.94%</td>
<td>64.89%</td>
</tr>
<tr>
<td>6</td>
<td>78.03%</td>
<td>78.87%</td>
</tr>
<tr>
<td>7</td>
<td>81.74%</td>
<td>86.17%</td>
</tr>
<tr>
<td>8</td>
<td>84.44%</td>
<td>89.42%</td>
</tr>
<tr>
<td>9</td>
<td>86.40%</td>
<td>90.76%</td>
</tr>
<tr>
<td>10</td>
<td>87.83%</td>
<td>91.30%</td>
</tr>
</tbody>
</table>

same frequency value, 32.07 percent. However, when we compare the effective reach, Schedule B appears to be much superior. By investing in more GRPs (185 versus 152) and using multiple advertisements in the same media vehicles to sacrifice reach for frequency, the plan achieves an effective (3+) reach of 38.39 percent. By contrast, Schedule A uses media vehicles with very low target market audience duplication. Its effective (3+) reach is only 13.98 percent. While Schedule B is roughly 40 percent more expensive (due to the higher GRPs), conventional EFP suggests that it is (38.39 percent/13.98 =) 2.75 times as effective! FVP shows us that the apparent superiority of Schedule B is misleading, leading planners to pay 40 percent more to achieve no increase in frequency value. Schedules A and B represent extreme cases, but they clearly illustrate the issues addressed by FVP versus EFP.

FVP offers several useful metrics for evaluating alternative schedules.

1. **Total frequency value (TFV).** As we have seen, the core metric for FVP analysis is the total frequency value (TFV) of a schedule, which is the total response (stated as a percentage, or a response probability) of the target population. In the previous example, both schedules yielded a total frequency value of 32.07 percent, as shown at the bottom of columns e and f. This means that both schedules would result in an estimated 32.07 percent message recognition by target market members by the end of the campaign.

2. **Frequency value per GRP (VPG).** Frequency value per GRP (VPG) is simply total frequency value divided by the number of GRPs required to achieve it. It is a measure of media efficiency, indicating the probability that any given media vehicle exposure will result in the kind of audience response desired in the campaign. In the example of Schedules A and B, the VPG of Schedule A is (32.07/152 =) 21.10 percent versus (32.07/185 =) 17.33 percent for Schedule B. Note, however, that the "GRPs" from which these were calculated (the bottom of columns g and h) are based on advertising exposure, not vehicle exposure (OTS). If half of the vehicle exposures result in advertising exposure, then the actual VPGs are half these numbers, or 10.58% and 8.66%.

3. **Total monetary value (TMV).** Total monetary value (TMV) is a variant of total frequency value (TFV), indicating how much the frequency of a schedule is worth. We noted earlier that we should be able to infer the value per point (VPP) of advertising response by simply dividing the advertising budget by the percentage level of response it is expected to achieve. For instance, if the company were willing to invest $1,500,000 to create 50 percent message recognition within the target market, the VPP would be ($1,500,000/50 =) $30,000. TMV for both Schedule A and Schedule B would be (32.07 percent × $30,000 =) $962,100. As long as this is higher than the projected cost of the campaign, the campaign will generate a profit.

4. **Cost per effective point (CEP).** The cost per effective point (CEP) addresses the efficiency with which advertising money is being spent. It looks at the total cost of advertising divided by schedule efficiency (VPG). If the cost per GRP for Schedules A and B were $3,000, CEP would be ($3,000/1055 =) $28.436 and ($3,000/8665 =) $34.622, respectively. Given a VPP of $30,000, Schedule A pays out, but Schedule B does not. CEP, then, can also be used to evaluate the profitability of a campaign.

The metrics provide tools for making the comparisons suggested by lines i and h in Figure 1. Line i suggests that planners may negotiate for higher budgets if they can demonstrate that a higher budget would yield attractive returns. This would
TABLE 5
Estimating Frequency Value

<table>
<thead>
<tr>
<th>Number of Exposures</th>
<th>Schedule A Distribution</th>
<th>Schedule B Distribution</th>
<th>Advertising Response Curve</th>
<th>Schedule A Frequency Value</th>
<th>Schedule B Frequency Value (GRPs)</th>
<th>Schedule A (GRPs)</th>
<th>Schedule B (GRPs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
</tr>
<tr>
<td>0</td>
<td>15.00%</td>
<td>40.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>38.35%</td>
<td>10.50%</td>
<td>24.95%</td>
<td>9.57%</td>
<td>2.62%</td>
<td>38.35</td>
<td>10.50</td>
</tr>
<tr>
<td>2</td>
<td>32.67%</td>
<td>11.11%</td>
<td>43.11%</td>
<td>14.08%</td>
<td>4.79%</td>
<td>65.34</td>
<td>22.22</td>
</tr>
<tr>
<td>3</td>
<td>9.79%</td>
<td>16.59%</td>
<td>56.32%</td>
<td>5.51%</td>
<td>9.34%</td>
<td>29.37</td>
<td>49.77</td>
</tr>
<tr>
<td>4</td>
<td>2.50%</td>
<td>12.00%</td>
<td>65.94%</td>
<td>1.65%</td>
<td>7.91%</td>
<td>10.00</td>
<td>48.00</td>
</tr>
<tr>
<td>5</td>
<td>1.25%</td>
<td>5.81%</td>
<td>72.94%</td>
<td>0.91%</td>
<td>4.24%</td>
<td>6.25</td>
<td>29.05</td>
</tr>
<tr>
<td>6</td>
<td>0.40%</td>
<td>2.76%</td>
<td>78.03%</td>
<td>0.31%</td>
<td>2.15%</td>
<td>2.40</td>
<td>16.56</td>
</tr>
<tr>
<td>7</td>
<td>0.03%</td>
<td>1.02%</td>
<td>81.74%</td>
<td>0.02%</td>
<td>0.83%</td>
<td>0.21</td>
<td>7.14</td>
</tr>
<tr>
<td>8</td>
<td>0.01%</td>
<td>0.15%</td>
<td>84.44%</td>
<td>0.01%</td>
<td>0.13%</td>
<td>0.08</td>
<td>1.20</td>
</tr>
<tr>
<td>9</td>
<td>0.00%</td>
<td>0.04%</td>
<td>86.40%</td>
<td>0.00%</td>
<td>0.03%</td>
<td>0.00</td>
<td>0.36</td>
</tr>
<tr>
<td>10</td>
<td>0.00%</td>
<td>0.02%</td>
<td>87.83%</td>
<td>0.00%</td>
<td>0.02%</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
<td>N/A</td>
<td>32.07%</td>
<td>32.07%</td>
<td>152.0*</td>
<td>185.0*</td>
</tr>
</tbody>
</table>

*These are "effective GRPs;" based on advertising exposure versus CTS.

happen when total monetary value (TMV) is much greater than the cost of a proposed schedule. Similarly, when the cost per effective point (CEP) is less than the economic value per point (EVP), we get the same result. Line h indicates that planners will compare different schedules in an effort to find one that delivers total frequency value (TFV) that is close to established targets. They will also compare schedules in search of one that maximizes value per GRP (VPG).

SUMMARY AND CONCLUSIONS
The purpose of this paper has been to describe frequency value planning (FVP) as an alternative media planning system to the commonly used effective frequency planning (EFP). In order to put the system into perspective, we sought to outline the history of effective reach and frequency, with the hope of explaining the media planning paradox—the fact that EFP is seriously flawed, and yet it is widely used among media planners. FVP presents a simple and powerful alternative to EFP. For all its flaws, EFP was the first practical method for incorporating media exposure frequency distribution data into the media planning process. The need for such a method still exists, and EFP will likely continue to be practiced until a better planning approach takes its place. Hence, the need for FVP.

Note that FVP is appropriate to its time. While the concept is simple, the method is relatively complicated. It has always been within the grasp of mainframe computers, but planners were justifiably reluctant to base their planning on systems they could not understand or access directly without working through an expert. This, combined with the many assumptions embedded within a frequency value model, interfered with its acceptance. Now, with the proliferation of powerful personal computers, spreadsheets, and other highly sophisticated analytical software, planners have become much more technologically sophisticated. Furthermore, the fact that media planning models can be installed and/or accessed on a local computer means that planners are able to experiment in greater depth with the tools they use. In the case of a frequency value model, they can become familiar not only with how it works but how sensitive it is to variations in assumptions. This makes the model much less threatening and more useful in the hands of media planners.

Note that the system described in this paper represents only a stage in the ongoing development of FVP. Many of the measures are relatively crude and may serve as an impetus for future research. Indeed, a final
EVALUATING MEDIA SCHEDULES

The purpose of this paper is to draw on the logic of the FVP model to suggest productive areas for future research.

General advertising exposure norms. As noted in our review, some research has been done regarding the relationship between OTS and advertising exposure. However, so far, research has yet to fully address even the crudest norms for various kinds of media and media options. At the very least, we should have exposure norms for different kinds of media, modified for major options (embedded versus station-break commercials, daytime versus prime-time television, etc.). So far, research in this area has tended to be spotty (addressing only some of the major media options) and limited to major media, such as television and magazines.

Principles and systems for estimating variations in exposure norms resulting from situational factors. We have noted that the relationship between OTS and advertising exposure would depend on situational factors. These might include dimensions such as the message, media context (editorial environment, physical or social setting of media exposure, layout and executional format, etc.), audience member knowledge and experience, interactive media/message effects, and the objectives of the campaign. At this point, we are just beginning to develop the most rudimentary model of how research in this area should be organized. What dimensions should it consider? What theoretical bases are relevant to the problem?

Advertising response functions. Existing research suggests that advertising response functions are generally concave, characterized by continually diminishing returns. Traditional wisdom and some research suggest that they may also be S-shaped in form. Are there other forms as well? What functions and parameters best describe the response curves? In this paper, we have combined hypothetical data with published judgmentally based systems to illustrate how one might go about estimating the parameters required to establish meaningful response functions. We need much more research in this area. This research needs to account for the effects of such things as prior consumer knowledge and advertising exposure, the effects of time between messages and campaigns, and segmentation effects.

Schedule value norms. If relatively accurate standards can be developed and accepted for FVP, then we can begin to develop schedule value norms for different kinds of schedules. That is, what constitutes a “good” versus “bad” VPG for different kinds of advertising objectives?

Validation studies. Validation studies would presumably address each part of the FVP model. For instance, models for estimating the shape and position of an advertising response curve should clearly be tested against actual data, as should models for estimating advertising exposure, given media vehicle exposure. However, there is also a need for overall validation studies through which the value of a schedule (TFV and TMV) would be matched against actual demonstrated advertising value.

Accounting for interaction effects across schedules. In an era of integrated marketing communications, advertisers are putting more and more effort into developing synergy across media campaigns. Newspapers are being used to prime people to watch television programs; magazines are being used to promote Internet sites, and so forth. FVP addresses single media campaigns. More work is needed to adapt it to address the synergistic effects of multiple media classes.

None of this is to diminish the significance of frequency value planning in its current state of development. In fact, it is a very practical system, even given our present state of knowledge—more so, at least, than EFP. Our suggestion, then, is that we begin implementing FVP and work on improving it at the same time.

Hugh M. Cannon is the Adcraft/Simons-Michelson Professor of Marketing at Wayne State University in Detroit, Michigan.

John D. Lichtenstein is the Everett D. Coiler Centennial Chair in Communication in the department of advertising at the University of Texas at Austin.

Avery M. Abernethy is associate professor of marketing at Auburn University. His advertising research has appeared in the Journal of Advertising Research, the Journal of Advertising, the Journal of Current Issues and Research in Advertising, the Journal of Retailing, and the Journal of Public Policy and Marketing, among others. He has also won numerous awards for teaching excellence.

REFERENCES

KRUGMAN, DEAN M., GLEN T. CAMERON, and CANDACE MCKEARN N WHITE. "Visual Atten-
EVALUATING MEDIA SCHEDULES

JOURNAL OF ADVERTISING RESEARCH

SUBSCRIPTION PRICE LIST FOR 2003 (VOL. 43)

New rates will go into effect beginning with the March 2003 issue, Volume 43, No. 1, as listed below. Beginning with Vol. 43, the JAR will be published on a quarterly basis and will be published in March, June, September, and December. Please note that although the frequency is being reduced, the amount of material included per issue in 2003 will increase from the current eight to twelve articles per issue.

<table>
<thead>
<tr>
<th>Both Domestic and Foreign</th>
<th>Agent Discount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional*</td>
<td>$275+</td>
</tr>
<tr>
<td>Individual</td>
<td>$155+</td>
</tr>
<tr>
<td>Member</td>
<td>$120+</td>
</tr>
<tr>
<td>Academic**</td>
<td>$ 75+</td>
</tr>
</tbody>
</table>

Journal of Advertising Research
641 Lexington Avenue—11th floor
New York, New York, 10022-4503
Tel: 1-212-751-5656
Fax: 1-212-319-5265

CUSTOMER SERVICE: TEL 1-800-765-7514

Checks should be made payable to the Advertising Research Foundation and sent to:

JOURNAL OF ADVERTISING RESEARCH
P.O. BOX 25
CONGERS, NEW YORK 10920-0025

ISSN: 0021-8499

*Institutional rates apply to all university, public, and corporate libraries, i.e., where there are multiple users of the subscriptions.

**Academic rates apply ONLY to individually addressed full-time professors and students (not university libraries). Multiyear subscription rates are not offered.

+Rates subject to change without advance notice.